Carbon Nanotubes: from Powders to Tunable Resonators

Ji Cao, Adrian M. Ionescu

Nanoelectronic Devices Laboratory (Nanolab), EPFL, Lausanne, Switzerland

Introduction: Carbon nanotubes (CNTs) are promising candidates for nano-electro-mechanical systems (NEMS). We report large-scale fabrication of resonant-body CNT field-effect transistors with an integration density of $\approx 10^9$/cm2, a yield of $\approx 80\%$ and nanoprecision. Electrical actuation/detection and novel in-situ upward/downward resonance frequency tuning are reported. The CNT resonators offer promising features for both radio-frequency and ultra-high resolution sensing applications.

CNT Powders to Solution is prepared by sonicating CNTs in aqueous media.

Large-scale Precise Assembly of the individually accessible CNT resonators is depicted.

Simultaneous Fabrication!

- PMMA
- LOR
- PMMA
- LOR
- PMMA

Precise Assembly!

A yield of $\approx 80\%$ and a density of 10^9/cm2 have been achieved with nano-precision; \sim Current NEMS integration complexity

Hysteresis-free Behavior of CNT-FETs can be influenced by chemical/thermal treatments.

Chemical/thermal treatments influence contamination amount \rightarrow gate hysteresis.

RF Characterization of a typical CNT resonator was performed.

Mass sensitivity ~ 80 zg

A resonant frequency $f_0 \sim 220$ MHz and a quality factor of $Q \sim 80$ have been observed.

Novel In-situ Frequency Tuning benefits from dual-gate configuration.

Downward Tuning

Upward Tuning

When the lateral gate or the lateral gate is biased, f_0 shifts accordingly.

Summary: We report, for the first time, large-scale precisely assembled CNT resonators without hysteresis. Resonant frequency can be tuned upwards/downwards. These results enable future application of CNT-based NEMS devices, such as ultra-sensitive mass sensors.

Acknowledgement: This work was supported by the Swiss Nanotera project CABTures (SNF Number: 20NANO_123614).

Publications: