Online indexing and distributed querying model-view sensor data in the cloud

Tian Guo, Thanasis G. Papaioannou, Hao Zhuang, Karl Aberer

1. EPFL (Swiss Federal Institute of Technology, Lausanne)
2. Center for Research & Technology Hellas (ITI-CERTH)

Model-view sensor data in the cloud

Sensor time series segmentation

Queries of interest:

Time(or value) range queries: SELECT sensor values (or time ranges) FROM sensor 1 WHEN t1 <= time <= t2 (or v1 <= value <= v2)

Time(or value) point queries: SELECT sensor values (or time ranges) FROM sensor 1 WHEN time = t (or value = v)

Composite queries: SELECT sensor values (or time ranges) FROM sensor 1 WHEN t1 <= time <= t2 AND v1 <= value <= v2

Challenges for managing model-view sensor data in the cloud

Store model-view sensor data in the distributed cloud store

Challenges:

Storage scheme
 - Model-view sensor data in key-value stores.

Model index
 - Update the segments of model-view sensor data on the fly
 - Support various queries over model-view sensor data via distributed computing

Key-Value model index

Index structure:

(1) Index time and value dimension respectively.
(2) two-tire structure of time (or value) index:
 - in-memory virtual search tree (vs-tree)
 - index and model table in the key-value store

Registration node of one segment:

(1) It is the highest one that overlaps the interval to index on vs-tree.
(2) It is the node of which secondary structure one segment is materialized into.

Index update:

(1) in-memory search on vs-tree.
(2) segment materialization in the key-value store.

Registration node searching on vs-tree

Segment materialization

Query processing

Point and Range queries:

(1) search on vs-tree to find relevant nodes.
(2) modify the data access method of MapReduce to enable to process the discrete parts of the index and model table.

Composite queries: adaptive index selection decides which index-model table to be processed by MapReduce.

Based on the splits n_a given the maximum mappers slots M waves is defined as

$$W = \frac{n_a}{M}$$

data transferring cost is defined as

$$D_r = \sum_{r \in R} g([W] + \frac{n_r}{1 - |S_r|})$$

$$g(x) = \begin{cases} 0, & x > 0 \\ \{x\}, & otherwise \end{cases}$$

the number of discrete splits $|S_r|$ in each region n_r is the number of regions of the index-model table. mapper slots m_r of each node

the combined cost of one composite query for time (or value) index is defined as

$$C = \alpha \cdot W + (1 - \alpha) D_r, (0 \leq \alpha \leq 1)$$

Experimental evaluation

Comparison of range query performance:

Acknowledgements

This research is supported in part by the EU OpenIoT Project FP7-ICT-2011-7-287305 and OpenSense project under SNF Number 20NA21 128839