Sub-mW Reconfigurable Front-end IC for Biosensing and Calibration

Sara Ghoreishizadeh, Antonio Pullini, Sandro Carrara, and Giovanni De Micheli
Integrated system laboratory, EPFL, Switzerland

Design Goals for the Front-end IC
- Low power (< mW) to be remotely powered
- Enable high accuracy (>12 bits) measurement
- Provide sensor control as well as readout
- Different electrochemical methods: Cyclic voltammetry and Chronoamperometry
- Enable calibration with temperature and pH
- Reconfigurable to allow different measurement configurations
- Stable interface to measure different sensors with different RC equivalent models
- Enable sensor conditioning in parallel with measurement
- Digital output data for better post processing and analysis

IC Architecture and Layout

- Microphotograph of the IC implemented in UMC 0.18 μm technology. Its area is 3.2 mm x 1.5 mm.
- Power consumption: 933 μW from VDD of 1.8 V
- The blocks colored in yellow and in green are implemented with analog and digital circuits, respectively.

Electrochemical Measurements Acquired with the IC

1) Cyclic voltammetry on different concentrations of Potassium Ferricyanide (PF)
2) Chronoamperometry at different concentrations of H2O2
3) Open circuit potential (OCP) measurement for pH sensing
4) Resistance measurement for Temperature sensing
