The Respiratory Pattern as an Indicator of the Anaerobic Threshold

Leila Mirmohamadsadeghi*, Jean-Marc Vesin*, Mathieu Lemay†, Olivier Dériaz‡
*Swiss Federal Institute of Technology Lausanne (EPFL), † Swiss Center for Electronics and Microtechnology (CSEM), ‡ Institut de Recherche en Réadaptation (IRR-SUVA)

Context
Obese patients monitoring the level of activity

The anaerobic threshold (AT) is the level of exercise above which some body energy is produced without oxygen. In exercises over the AT, anaerobic glycolysis occurs and leads to early exhaustion.

Measuring the AT in the field is useful

The respiratory pattern is candidate to be related to the AT.

Methods

Data
- 12 subjects wore a portable indirect calorimeter and an instrumented shirt
- ran on a treadmill in increments
 - Breathing rate (BR)
 - Ventilation (VT)
 - Heart rate (HR)

Hypothesis
The respiratory pattern is correlated with the AT and/or changes at the AT level.

Features
- Variables:
 - BR, VT, HR
 - BR/HR, VT/HR (normalized by the HR)
 - 1/BR, 1/VT, 1/HR, HR/BR, HR/VT (inverses)
- Variability measurement:
 - Variance
 - Variance of a quadratic fit
 - Cumulative variance (to find trends)

Analysis
- Statistical hypothesis testing
- Regression analysis

Results

1/VT and HR/BR show a markedly reduced variability after the occurrence of the AT. The quadratic fit is better after the AT.

Their variance and their fit error variance are clearly smaller after AT occurrence.

An exponential fit on the cumulative variance shows a plateau at high exercise intensity.

However this decrease is not statistically related to AT

The plateau of the cumulative variance is related to the AT.

The AT can be predicted by the ventilatory variability

Their variance and their fit error variance are clearly smaller after AT occurrence.

Conclusions

- The variance of respiratory variables decreases with exercise intensity but apparently not always at the AT level.
- The cumulative variance of respiratory variables is inversely correlated with the AT.
- Variables recorded with an instrumented shirt may predict the AT in the field (work in progress).